
ECE 604, Lecture 4

August 30, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Boundary Conditions–Unconventional View

• Electric Field at a Dielectric Interface

• Energy Stored–Review

Additional Reading:

• Textbook 1.14, 1.22

Printed on September 6, 2018 at 09 : 19: W.C. Chew and D. Jiao.
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2 Boundary Conditions–Unconventional View

In this lecture, we will espouse some unconventional way of arriving at boundary
conditions at dielectric interface. Instead of working with pill boxes as most text
books would do, we work directly with the partial differential equations involved
to arrive at the boundary conditions. This method will allow one to eyeball a
partial differential equation and infer directly that boundary condition that
partial differential equation will induce.

2.1 Faraday’s Law

From Faraday’s law, it follows that

∇×E = 0 (2.1)

From this, we have deduce earlier that

E1t = E2t (2.2)

or tangential E is continuous. But we will arrive at this using a different ap-
proach below.

Figure 1:

Think of t̂ and n̂ as the local x̂ and ŷ coordinates, then

∇×E =

(
x̂
∂

∂x
+ ŷ

∂

∂y

)
× (x̂Ex + ŷEy) (2.3)

= ẑ
∂

∂x
Ey − ẑ

∂

∂y
Ex (2.4)

Using the distributive property of cross product, and evaluating the cross prod-
uct in cartesian coordinates, the above can be evaluated easily. The cross prod-
uct produces four terms, but only two of the four terms are non-zero as shown
above. Since ∇×E is finite, the above implies that ∂

∂yEy and ∂
∂yEx have to be

finite. In order words, Ex is continuous in the y direction and Ey is continuous
in the x direction. Since in the local coordinate system, Ex = Et, then Et is
continuous across the boundary. The above implies that

E1t = E2t (2.5)
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2.2 Gauss’s Law

From Gauss’s law, we have

∇ ·D = % (2.6)

where % is the volume charge density.

Figure 2:

Expressing the above in local coordinates, then

∇ ·D =
∂

∂x
Dx +

∂

∂y
Dy +

∂

∂z
= % (2.7)

If there is a surface layer charge at the interface, then the volume charge density
must be infinitely large, and can be expressed in terms of a delta function, or
% = %sδ(z). By looking at the above expression, the only term that can produce
a δ(z) is from ∂

∂zDz. In other words, Dz has a jump discontinuity at z = 0 the
other terms do not.
Then

∂

∂z
Dz = %sδ(z) (2.8)

Integrating the above from z −∆ to z + ∆, we get

Dz(z) |z+∆
z−∆= %s (2.9)

or

Dz(z+)−Dz(z−) = %s (2.10)

where z+ = lim∆→0 z+∆, z− = lim∆→0 z−∆. Since Dz(z+) = D2n, Dz(z−) =
D1n, the above becomes

D2n −D1n = %s (2.11)

or that

n̂ · (D2 −D1) = %s (2.12)
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3 E Field at a Dielectric Interface

Figure 3:

Since we have, from Faraday’s law and Gauss’s law that

E1t = E2t (3.1)

ε1E1n = ε2E2n (3.2)

if ε1 > ε2, then E1n < E2n. The electric field line will appear to be as shown in
Figure 4.

Figure 4:

When ε1 →∞, there are two scenarios to consider:

1. When E2 or θ2 is fixed as ε1 → ∞. In this case, both the right-hand
side and the left-hand side of equation (3.2) are finite. Then E1n has to
become zero, to keep ε1E1n finite. But E1t = E2t remain finite. Hence,
θ1 → π/2.
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2. When E1 or θ1 is fixed as ε1 → ∞. To satisfy (3.2), then it is necessary
that E1n → 0. This is possible if E1 becomes zero or very small. But
in this case, E1t = E2t become very small as well. Hence, θ2 → 0 or E2

becomes normal to the interface.

In either case, θ1 > θ2. A relationship between θ1 and θ2 is derived in the
textbook given by

ε1 tan θ2 = ε2 tan θ1 (3.3)

which can be used to verify the above scenarios.
The second scenario is similar to when region 1 becomes a PEC (perfect

electric conductor). Then, E1t = E2t = 0, and E2n is finite, and the electric
field is normal to the interface. A difference is that interfacial charges will
occur at the conductor-dielectric interface, which will shield out the field in the
conductor region completely.

4 Conductive Media Case

Figure 5:

∇ · J = −∂%
∂t

(4.1)

For the static case, ∂%
∂t = 0, and we have finally

∇ · J = 0 (4.2)

Just like the Gauss’s law case, the above implies that ∂
∂nJn = 0 or that Jn is

continuous, or that J1n = J2n. In other words,

n̂ · (J2 − J1) = 0 (4.3)

5



Hence, using J = σE, we have

σ2E2n − σ1E1n = 0 (4.4)

Again, from Ampere’s law,

E2t − E1t = 0 (4.5)

But Gauss’s law implies that

ε2E2n − ε1E1n = %s (4.6)

Hence, surface charge accumulation is necessary, unless σ2/σ1 = ε2 = ε1.

5 Electric Energy

Pairwise energy stored between two charges q1 and q2 is

U12 =
q1q2

4πεR12
(5.1)

where R12 is the distance between the two charges. The above follows because

Φ =
q

4πεr
(5.2)

The above is the energy needed to move a unit charge close to another charge
of value q so that the distance between the unit charge and charge q is r apart.

Figure 6:

When we have a cluster of N charges, the total pairwise energy stored be-
tween them is

UE =
1

2

N∑
i=1

N∑
j=1

qiqj
4πεRij

, i 6= j (5.3)

But since

Φi =

N∑
j=1

qj
4πεRij

, , i 6= j (5.4)
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then (5.3) becomes

UE =
1

2

N∑
i=1

qiΦi (5.5)

Replacing the above by charge density, we have

UE =
1

2

ˆ
v

%(r)Φ(r)dV (5.6)

where %

%(r) =

N∑
i=1

qiδ(r− ri) (5.7)

Since ∇ ·D = %, we have

UE =
1

2

ˆ
v

(∇ ·D)ΦdV (5.8)

Using integration by parts in 3D (see Section 6), we have

UE = −1

2

ˆ
v

D · ∇ΦdV =
1

2

ˆ
v

D ·EdV (5.9)

If D = εE, then the above becomes

UE =
1

2

ˆ
V

εE ·EdV =
1

2

ˆ
V

ε|E|2dV (5.10)

5.1 Energy in a Capacitor

For a parallel plate capacitor, the field between the two plates is almost uniform.
Then we can approximate the total energy stored as

UE =
1

2
(Vol)DE =

1

2
(Ad)

εV

d

V

d
(5.11)

=
1

2

(
εA

d

)
V 2 =

1

2
CV 2 (5.12)

6 Integration by Parts in 3D

We have used integration by parts in 3D to rewrite the integral below:

UE =
1

2

ˆ
v

(∇ ·D)ΦdV = −1

2

ˆ
v

D · (∇Φ)dV (6.1)
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To prove the above, we first use the identity for derivative of product in 3D,
namely,

∇ · (ΦD) = (∇Φ) ·D + Φ∇ ·D (6.2)

Noticing the divergence on the left-hand side and integrating the above over a
volume V , and invoking Gauss’s divergence theorem, one gets

˛
S

(ΦD) · dS =

ˆ
V

(∇Φ) ·DdV +

ˆ
V

Φ(∇ ·D)dV (6.3)

Next, we let V → ∞, and hence, S → ∞. It is not clear if the left-hand side
becomes vanishingly small, as the surface area S that we are integrating over
becomes infinitely large.

However, if Φ is due to a cluster of point charges, then Φ ∼ O(1/r) and
D ∼ O(1/r2) when r → ∞, or that the integrand on the left-hand side ΦD ∼
O(1/r3). But S grows as r2 when r→∞, and hence, the left-hand side indeed
becomes vanishingly small. Then indeed,

ˆ
V

(∇Φ) ·DdV = −
ˆ
V

Φ(∇ ·D)dV (6.4)
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